(0) Obligation:

Clauses:

minus(X, Y, Z) :- ','(=(X, 0), ','(!, =(Z, 0))).
minus(X, Y, Z) :- ','(=(Y, 0), ','(!, =(Z, X))).
minus(X, Y, Z) :- ','(=(X, s(A)), ','(=(Y, s(B)), minus(A, B, Z))).
div(X, Y, Z) :- ','(=(Y, 0), ','(!, fail)).
div(X, Y, Z) :- ','(=(X, 0), ','(!, =(Z, 0))).
div(X, Y, Z) :- ','(minus(X, Y, U), ','(div(U, Y, V), =(Z, s(V)))).
=(X, X).

Query: div(g,g,a)

(1) BuiltinConflictTransformerProof (EQUIVALENT transformation)

Renamed defined predicates conflicting with built-in predicates [PROLOG].

(2) Obligation:

Clauses:

minus(X, Y, Z) :- ','(user_defined_=(X, 0), ','(!, user_defined_=(Z, 0))).
minus(X, Y, Z) :- ','(user_defined_=(Y, 0), ','(!, user_defined_=(Z, X))).
minus(X, Y, Z) :- ','(user_defined_=(X, s(A)), ','(user_defined_=(Y, s(B)), minus(A, B, Z))).
div(X, Y, Z) :- ','(user_defined_=(Y, 0), ','(!, fail)).
div(X, Y, Z) :- ','(user_defined_=(X, 0), ','(!, user_defined_=(Z, 0))).
div(X, Y, Z) :- ','(minus(X, Y, U), ','(div(U, Y, V), user_defined_=(Z, s(V)))).
user_defined_=(X, X).

Query: div(g,g,a)

(3) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(4) Obligation:

Clauses:

minusA(0, T88, 0).
minusA(T103, 0, T103).
minusA(s(T115), s(T122), X182) :- minusA(T115, T122, X182).
minusB(s(T73), s(T80), X97) :- minusA(T73, T80, X97).
divC(0, T142, 0).
divC(T152, T153, X265) :- minusB(T152, T153, X263).
divC(T152, T153, X265) :- ','(minusB(T152, T153, T156), divC(T156, T153, X264)).
divC(T152, T153, s(T166)) :- ','(minusB(T152, T153, T156), divC(T156, T153, T166)).
divD(0, T21, 0).
divD(T39, T40, T42) :- minusB(T39, T40, X40).
divD(T39, T40, T42) :- ','(minusB(T39, T40, T45), divC(T45, T40, X41)).
divD(T39, T40, s(T172)) :- ','(minusB(T39, T40, T45), divC(T45, T40, T172)).

Query: divD(g,g,a)

(5) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
divD_in: (b,b,f)
minusB_in: (b,b,f)
minusA_in: (b,b,f)
divC_in: (b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

divD_in_gga(0, T21, 0) → divD_out_gga(0, T21, 0)
divD_in_gga(T39, T40, T42) → U8_gga(T39, T40, T42, minusB_in_gga(T39, T40, X40))
minusB_in_gga(s(T73), s(T80), X97) → U2_gga(T73, T80, X97, minusA_in_gga(T73, T80, X97))
minusA_in_gga(0, T88, 0) → minusA_out_gga(0, T88, 0)
minusA_in_gga(T103, 0, T103) → minusA_out_gga(T103, 0, T103)
minusA_in_gga(s(T115), s(T122), X182) → U1_gga(T115, T122, X182, minusA_in_gga(T115, T122, X182))
U1_gga(T115, T122, X182, minusA_out_gga(T115, T122, X182)) → minusA_out_gga(s(T115), s(T122), X182)
U2_gga(T73, T80, X97, minusA_out_gga(T73, T80, X97)) → minusB_out_gga(s(T73), s(T80), X97)
U8_gga(T39, T40, T42, minusB_out_gga(T39, T40, X40)) → divD_out_gga(T39, T40, T42)
divD_in_gga(T39, T40, T42) → U9_gga(T39, T40, T42, minusB_in_gga(T39, T40, T45))
U9_gga(T39, T40, T42, minusB_out_gga(T39, T40, T45)) → U10_gga(T39, T40, T42, divC_in_gga(T45, T40, X41))
divC_in_gga(0, T142, 0) → divC_out_gga(0, T142, 0)
divC_in_gga(T152, T153, X265) → U3_gga(T152, T153, X265, minusB_in_gga(T152, T153, X263))
U3_gga(T152, T153, X265, minusB_out_gga(T152, T153, X263)) → divC_out_gga(T152, T153, X265)
divC_in_gga(T152, T153, X265) → U4_gga(T152, T153, X265, minusB_in_gga(T152, T153, T156))
U4_gga(T152, T153, X265, minusB_out_gga(T152, T153, T156)) → U5_gga(T152, T153, X265, divC_in_gga(T156, T153, X264))
divC_in_gga(T152, T153, s(T166)) → U6_gga(T152, T153, T166, minusB_in_gga(T152, T153, T156))
U6_gga(T152, T153, T166, minusB_out_gga(T152, T153, T156)) → U7_gga(T152, T153, T166, divC_in_gga(T156, T153, T166))
U7_gga(T152, T153, T166, divC_out_gga(T156, T153, T166)) → divC_out_gga(T152, T153, s(T166))
U5_gga(T152, T153, X265, divC_out_gga(T156, T153, X264)) → divC_out_gga(T152, T153, X265)
U10_gga(T39, T40, T42, divC_out_gga(T45, T40, X41)) → divD_out_gga(T39, T40, T42)
divD_in_gga(T39, T40, s(T172)) → U11_gga(T39, T40, T172, minusB_in_gga(T39, T40, T45))
U11_gga(T39, T40, T172, minusB_out_gga(T39, T40, T45)) → U12_gga(T39, T40, T172, divC_in_gga(T45, T40, T172))
U12_gga(T39, T40, T172, divC_out_gga(T45, T40, T172)) → divD_out_gga(T39, T40, s(T172))

The argument filtering Pi contains the following mapping:
divD_in_gga(x1, x2, x3)  =  divD_in_gga(x1, x2)
0  =  0
divD_out_gga(x1, x2, x3)  =  divD_out_gga
U8_gga(x1, x2, x3, x4)  =  U8_gga(x4)
minusB_in_gga(x1, x2, x3)  =  minusB_in_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
minusB_out_gga(x1, x2, x3)  =  minusB_out_gga(x3)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x2, x4)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
divC_in_gga(x1, x2, x3)  =  divC_in_gga(x1, x2)
divC_out_gga(x1, x2, x3)  =  divC_out_gga
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x2, x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(6) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

divD_in_gga(0, T21, 0) → divD_out_gga(0, T21, 0)
divD_in_gga(T39, T40, T42) → U8_gga(T39, T40, T42, minusB_in_gga(T39, T40, X40))
minusB_in_gga(s(T73), s(T80), X97) → U2_gga(T73, T80, X97, minusA_in_gga(T73, T80, X97))
minusA_in_gga(0, T88, 0) → minusA_out_gga(0, T88, 0)
minusA_in_gga(T103, 0, T103) → minusA_out_gga(T103, 0, T103)
minusA_in_gga(s(T115), s(T122), X182) → U1_gga(T115, T122, X182, minusA_in_gga(T115, T122, X182))
U1_gga(T115, T122, X182, minusA_out_gga(T115, T122, X182)) → minusA_out_gga(s(T115), s(T122), X182)
U2_gga(T73, T80, X97, minusA_out_gga(T73, T80, X97)) → minusB_out_gga(s(T73), s(T80), X97)
U8_gga(T39, T40, T42, minusB_out_gga(T39, T40, X40)) → divD_out_gga(T39, T40, T42)
divD_in_gga(T39, T40, T42) → U9_gga(T39, T40, T42, minusB_in_gga(T39, T40, T45))
U9_gga(T39, T40, T42, minusB_out_gga(T39, T40, T45)) → U10_gga(T39, T40, T42, divC_in_gga(T45, T40, X41))
divC_in_gga(0, T142, 0) → divC_out_gga(0, T142, 0)
divC_in_gga(T152, T153, X265) → U3_gga(T152, T153, X265, minusB_in_gga(T152, T153, X263))
U3_gga(T152, T153, X265, minusB_out_gga(T152, T153, X263)) → divC_out_gga(T152, T153, X265)
divC_in_gga(T152, T153, X265) → U4_gga(T152, T153, X265, minusB_in_gga(T152, T153, T156))
U4_gga(T152, T153, X265, minusB_out_gga(T152, T153, T156)) → U5_gga(T152, T153, X265, divC_in_gga(T156, T153, X264))
divC_in_gga(T152, T153, s(T166)) → U6_gga(T152, T153, T166, minusB_in_gga(T152, T153, T156))
U6_gga(T152, T153, T166, minusB_out_gga(T152, T153, T156)) → U7_gga(T152, T153, T166, divC_in_gga(T156, T153, T166))
U7_gga(T152, T153, T166, divC_out_gga(T156, T153, T166)) → divC_out_gga(T152, T153, s(T166))
U5_gga(T152, T153, X265, divC_out_gga(T156, T153, X264)) → divC_out_gga(T152, T153, X265)
U10_gga(T39, T40, T42, divC_out_gga(T45, T40, X41)) → divD_out_gga(T39, T40, T42)
divD_in_gga(T39, T40, s(T172)) → U11_gga(T39, T40, T172, minusB_in_gga(T39, T40, T45))
U11_gga(T39, T40, T172, minusB_out_gga(T39, T40, T45)) → U12_gga(T39, T40, T172, divC_in_gga(T45, T40, T172))
U12_gga(T39, T40, T172, divC_out_gga(T45, T40, T172)) → divD_out_gga(T39, T40, s(T172))

The argument filtering Pi contains the following mapping:
divD_in_gga(x1, x2, x3)  =  divD_in_gga(x1, x2)
0  =  0
divD_out_gga(x1, x2, x3)  =  divD_out_gga
U8_gga(x1, x2, x3, x4)  =  U8_gga(x4)
minusB_in_gga(x1, x2, x3)  =  minusB_in_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
minusB_out_gga(x1, x2, x3)  =  minusB_out_gga(x3)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x2, x4)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
divC_in_gga(x1, x2, x3)  =  divC_in_gga(x1, x2)
divC_out_gga(x1, x2, x3)  =  divC_out_gga
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x2, x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x4)

(7) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

DIVD_IN_GGA(T39, T40, T42) → U8_GGA(T39, T40, T42, minusB_in_gga(T39, T40, X40))
DIVD_IN_GGA(T39, T40, T42) → MINUSB_IN_GGA(T39, T40, X40)
MINUSB_IN_GGA(s(T73), s(T80), X97) → U2_GGA(T73, T80, X97, minusA_in_gga(T73, T80, X97))
MINUSB_IN_GGA(s(T73), s(T80), X97) → MINUSA_IN_GGA(T73, T80, X97)
MINUSA_IN_GGA(s(T115), s(T122), X182) → U1_GGA(T115, T122, X182, minusA_in_gga(T115, T122, X182))
MINUSA_IN_GGA(s(T115), s(T122), X182) → MINUSA_IN_GGA(T115, T122, X182)
DIVD_IN_GGA(T39, T40, T42) → U9_GGA(T39, T40, T42, minusB_in_gga(T39, T40, T45))
U9_GGA(T39, T40, T42, minusB_out_gga(T39, T40, T45)) → U10_GGA(T39, T40, T42, divC_in_gga(T45, T40, X41))
U9_GGA(T39, T40, T42, minusB_out_gga(T39, T40, T45)) → DIVC_IN_GGA(T45, T40, X41)
DIVC_IN_GGA(T152, T153, X265) → U3_GGA(T152, T153, X265, minusB_in_gga(T152, T153, X263))
DIVC_IN_GGA(T152, T153, X265) → MINUSB_IN_GGA(T152, T153, X263)
DIVC_IN_GGA(T152, T153, X265) → U4_GGA(T152, T153, X265, minusB_in_gga(T152, T153, T156))
U4_GGA(T152, T153, X265, minusB_out_gga(T152, T153, T156)) → U5_GGA(T152, T153, X265, divC_in_gga(T156, T153, X264))
U4_GGA(T152, T153, X265, minusB_out_gga(T152, T153, T156)) → DIVC_IN_GGA(T156, T153, X264)
DIVC_IN_GGA(T152, T153, s(T166)) → U6_GGA(T152, T153, T166, minusB_in_gga(T152, T153, T156))
DIVC_IN_GGA(T152, T153, s(T166)) → MINUSB_IN_GGA(T152, T153, T156)
U6_GGA(T152, T153, T166, minusB_out_gga(T152, T153, T156)) → U7_GGA(T152, T153, T166, divC_in_gga(T156, T153, T166))
U6_GGA(T152, T153, T166, minusB_out_gga(T152, T153, T156)) → DIVC_IN_GGA(T156, T153, T166)
DIVD_IN_GGA(T39, T40, s(T172)) → U11_GGA(T39, T40, T172, minusB_in_gga(T39, T40, T45))
DIVD_IN_GGA(T39, T40, s(T172)) → MINUSB_IN_GGA(T39, T40, T45)
U11_GGA(T39, T40, T172, minusB_out_gga(T39, T40, T45)) → U12_GGA(T39, T40, T172, divC_in_gga(T45, T40, T172))
U11_GGA(T39, T40, T172, minusB_out_gga(T39, T40, T45)) → DIVC_IN_GGA(T45, T40, T172)

The TRS R consists of the following rules:

divD_in_gga(0, T21, 0) → divD_out_gga(0, T21, 0)
divD_in_gga(T39, T40, T42) → U8_gga(T39, T40, T42, minusB_in_gga(T39, T40, X40))
minusB_in_gga(s(T73), s(T80), X97) → U2_gga(T73, T80, X97, minusA_in_gga(T73, T80, X97))
minusA_in_gga(0, T88, 0) → minusA_out_gga(0, T88, 0)
minusA_in_gga(T103, 0, T103) → minusA_out_gga(T103, 0, T103)
minusA_in_gga(s(T115), s(T122), X182) → U1_gga(T115, T122, X182, minusA_in_gga(T115, T122, X182))
U1_gga(T115, T122, X182, minusA_out_gga(T115, T122, X182)) → minusA_out_gga(s(T115), s(T122), X182)
U2_gga(T73, T80, X97, minusA_out_gga(T73, T80, X97)) → minusB_out_gga(s(T73), s(T80), X97)
U8_gga(T39, T40, T42, minusB_out_gga(T39, T40, X40)) → divD_out_gga(T39, T40, T42)
divD_in_gga(T39, T40, T42) → U9_gga(T39, T40, T42, minusB_in_gga(T39, T40, T45))
U9_gga(T39, T40, T42, minusB_out_gga(T39, T40, T45)) → U10_gga(T39, T40, T42, divC_in_gga(T45, T40, X41))
divC_in_gga(0, T142, 0) → divC_out_gga(0, T142, 0)
divC_in_gga(T152, T153, X265) → U3_gga(T152, T153, X265, minusB_in_gga(T152, T153, X263))
U3_gga(T152, T153, X265, minusB_out_gga(T152, T153, X263)) → divC_out_gga(T152, T153, X265)
divC_in_gga(T152, T153, X265) → U4_gga(T152, T153, X265, minusB_in_gga(T152, T153, T156))
U4_gga(T152, T153, X265, minusB_out_gga(T152, T153, T156)) → U5_gga(T152, T153, X265, divC_in_gga(T156, T153, X264))
divC_in_gga(T152, T153, s(T166)) → U6_gga(T152, T153, T166, minusB_in_gga(T152, T153, T156))
U6_gga(T152, T153, T166, minusB_out_gga(T152, T153, T156)) → U7_gga(T152, T153, T166, divC_in_gga(T156, T153, T166))
U7_gga(T152, T153, T166, divC_out_gga(T156, T153, T166)) → divC_out_gga(T152, T153, s(T166))
U5_gga(T152, T153, X265, divC_out_gga(T156, T153, X264)) → divC_out_gga(T152, T153, X265)
U10_gga(T39, T40, T42, divC_out_gga(T45, T40, X41)) → divD_out_gga(T39, T40, T42)
divD_in_gga(T39, T40, s(T172)) → U11_gga(T39, T40, T172, minusB_in_gga(T39, T40, T45))
U11_gga(T39, T40, T172, minusB_out_gga(T39, T40, T45)) → U12_gga(T39, T40, T172, divC_in_gga(T45, T40, T172))
U12_gga(T39, T40, T172, divC_out_gga(T45, T40, T172)) → divD_out_gga(T39, T40, s(T172))

The argument filtering Pi contains the following mapping:
divD_in_gga(x1, x2, x3)  =  divD_in_gga(x1, x2)
0  =  0
divD_out_gga(x1, x2, x3)  =  divD_out_gga
U8_gga(x1, x2, x3, x4)  =  U8_gga(x4)
minusB_in_gga(x1, x2, x3)  =  minusB_in_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
minusB_out_gga(x1, x2, x3)  =  minusB_out_gga(x3)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x2, x4)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
divC_in_gga(x1, x2, x3)  =  divC_in_gga(x1, x2)
divC_out_gga(x1, x2, x3)  =  divC_out_gga
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x2, x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x4)
DIVD_IN_GGA(x1, x2, x3)  =  DIVD_IN_GGA(x1, x2)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x4)
MINUSB_IN_GGA(x1, x2, x3)  =  MINUSB_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x4)
MINUSA_IN_GGA(x1, x2, x3)  =  MINUSA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x4)
U9_GGA(x1, x2, x3, x4)  =  U9_GGA(x2, x4)
U10_GGA(x1, x2, x3, x4)  =  U10_GGA(x4)
DIVC_IN_GGA(x1, x2, x3)  =  DIVC_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x4)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x2, x4)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x4)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x2, x4)
U7_GGA(x1, x2, x3, x4)  =  U7_GGA(x4)
U11_GGA(x1, x2, x3, x4)  =  U11_GGA(x2, x4)
U12_GGA(x1, x2, x3, x4)  =  U12_GGA(x4)

We have to consider all (P,R,Pi)-chains

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVD_IN_GGA(T39, T40, T42) → U8_GGA(T39, T40, T42, minusB_in_gga(T39, T40, X40))
DIVD_IN_GGA(T39, T40, T42) → MINUSB_IN_GGA(T39, T40, X40)
MINUSB_IN_GGA(s(T73), s(T80), X97) → U2_GGA(T73, T80, X97, minusA_in_gga(T73, T80, X97))
MINUSB_IN_GGA(s(T73), s(T80), X97) → MINUSA_IN_GGA(T73, T80, X97)
MINUSA_IN_GGA(s(T115), s(T122), X182) → U1_GGA(T115, T122, X182, minusA_in_gga(T115, T122, X182))
MINUSA_IN_GGA(s(T115), s(T122), X182) → MINUSA_IN_GGA(T115, T122, X182)
DIVD_IN_GGA(T39, T40, T42) → U9_GGA(T39, T40, T42, minusB_in_gga(T39, T40, T45))
U9_GGA(T39, T40, T42, minusB_out_gga(T39, T40, T45)) → U10_GGA(T39, T40, T42, divC_in_gga(T45, T40, X41))
U9_GGA(T39, T40, T42, minusB_out_gga(T39, T40, T45)) → DIVC_IN_GGA(T45, T40, X41)
DIVC_IN_GGA(T152, T153, X265) → U3_GGA(T152, T153, X265, minusB_in_gga(T152, T153, X263))
DIVC_IN_GGA(T152, T153, X265) → MINUSB_IN_GGA(T152, T153, X263)
DIVC_IN_GGA(T152, T153, X265) → U4_GGA(T152, T153, X265, minusB_in_gga(T152, T153, T156))
U4_GGA(T152, T153, X265, minusB_out_gga(T152, T153, T156)) → U5_GGA(T152, T153, X265, divC_in_gga(T156, T153, X264))
U4_GGA(T152, T153, X265, minusB_out_gga(T152, T153, T156)) → DIVC_IN_GGA(T156, T153, X264)
DIVC_IN_GGA(T152, T153, s(T166)) → U6_GGA(T152, T153, T166, minusB_in_gga(T152, T153, T156))
DIVC_IN_GGA(T152, T153, s(T166)) → MINUSB_IN_GGA(T152, T153, T156)
U6_GGA(T152, T153, T166, minusB_out_gga(T152, T153, T156)) → U7_GGA(T152, T153, T166, divC_in_gga(T156, T153, T166))
U6_GGA(T152, T153, T166, minusB_out_gga(T152, T153, T156)) → DIVC_IN_GGA(T156, T153, T166)
DIVD_IN_GGA(T39, T40, s(T172)) → U11_GGA(T39, T40, T172, minusB_in_gga(T39, T40, T45))
DIVD_IN_GGA(T39, T40, s(T172)) → MINUSB_IN_GGA(T39, T40, T45)
U11_GGA(T39, T40, T172, minusB_out_gga(T39, T40, T45)) → U12_GGA(T39, T40, T172, divC_in_gga(T45, T40, T172))
U11_GGA(T39, T40, T172, minusB_out_gga(T39, T40, T45)) → DIVC_IN_GGA(T45, T40, T172)

The TRS R consists of the following rules:

divD_in_gga(0, T21, 0) → divD_out_gga(0, T21, 0)
divD_in_gga(T39, T40, T42) → U8_gga(T39, T40, T42, minusB_in_gga(T39, T40, X40))
minusB_in_gga(s(T73), s(T80), X97) → U2_gga(T73, T80, X97, minusA_in_gga(T73, T80, X97))
minusA_in_gga(0, T88, 0) → minusA_out_gga(0, T88, 0)
minusA_in_gga(T103, 0, T103) → minusA_out_gga(T103, 0, T103)
minusA_in_gga(s(T115), s(T122), X182) → U1_gga(T115, T122, X182, minusA_in_gga(T115, T122, X182))
U1_gga(T115, T122, X182, minusA_out_gga(T115, T122, X182)) → minusA_out_gga(s(T115), s(T122), X182)
U2_gga(T73, T80, X97, minusA_out_gga(T73, T80, X97)) → minusB_out_gga(s(T73), s(T80), X97)
U8_gga(T39, T40, T42, minusB_out_gga(T39, T40, X40)) → divD_out_gga(T39, T40, T42)
divD_in_gga(T39, T40, T42) → U9_gga(T39, T40, T42, minusB_in_gga(T39, T40, T45))
U9_gga(T39, T40, T42, minusB_out_gga(T39, T40, T45)) → U10_gga(T39, T40, T42, divC_in_gga(T45, T40, X41))
divC_in_gga(0, T142, 0) → divC_out_gga(0, T142, 0)
divC_in_gga(T152, T153, X265) → U3_gga(T152, T153, X265, minusB_in_gga(T152, T153, X263))
U3_gga(T152, T153, X265, minusB_out_gga(T152, T153, X263)) → divC_out_gga(T152, T153, X265)
divC_in_gga(T152, T153, X265) → U4_gga(T152, T153, X265, minusB_in_gga(T152, T153, T156))
U4_gga(T152, T153, X265, minusB_out_gga(T152, T153, T156)) → U5_gga(T152, T153, X265, divC_in_gga(T156, T153, X264))
divC_in_gga(T152, T153, s(T166)) → U6_gga(T152, T153, T166, minusB_in_gga(T152, T153, T156))
U6_gga(T152, T153, T166, minusB_out_gga(T152, T153, T156)) → U7_gga(T152, T153, T166, divC_in_gga(T156, T153, T166))
U7_gga(T152, T153, T166, divC_out_gga(T156, T153, T166)) → divC_out_gga(T152, T153, s(T166))
U5_gga(T152, T153, X265, divC_out_gga(T156, T153, X264)) → divC_out_gga(T152, T153, X265)
U10_gga(T39, T40, T42, divC_out_gga(T45, T40, X41)) → divD_out_gga(T39, T40, T42)
divD_in_gga(T39, T40, s(T172)) → U11_gga(T39, T40, T172, minusB_in_gga(T39, T40, T45))
U11_gga(T39, T40, T172, minusB_out_gga(T39, T40, T45)) → U12_gga(T39, T40, T172, divC_in_gga(T45, T40, T172))
U12_gga(T39, T40, T172, divC_out_gga(T45, T40, T172)) → divD_out_gga(T39, T40, s(T172))

The argument filtering Pi contains the following mapping:
divD_in_gga(x1, x2, x3)  =  divD_in_gga(x1, x2)
0  =  0
divD_out_gga(x1, x2, x3)  =  divD_out_gga
U8_gga(x1, x2, x3, x4)  =  U8_gga(x4)
minusB_in_gga(x1, x2, x3)  =  minusB_in_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
minusB_out_gga(x1, x2, x3)  =  minusB_out_gga(x3)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x2, x4)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
divC_in_gga(x1, x2, x3)  =  divC_in_gga(x1, x2)
divC_out_gga(x1, x2, x3)  =  divC_out_gga
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x2, x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x4)
DIVD_IN_GGA(x1, x2, x3)  =  DIVD_IN_GGA(x1, x2)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x4)
MINUSB_IN_GGA(x1, x2, x3)  =  MINUSB_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x4)
MINUSA_IN_GGA(x1, x2, x3)  =  MINUSA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x4)
U9_GGA(x1, x2, x3, x4)  =  U9_GGA(x2, x4)
U10_GGA(x1, x2, x3, x4)  =  U10_GGA(x4)
DIVC_IN_GGA(x1, x2, x3)  =  DIVC_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x4)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x2, x4)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x4)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x2, x4)
U7_GGA(x1, x2, x3, x4)  =  U7_GGA(x4)
U11_GGA(x1, x2, x3, x4)  =  U11_GGA(x2, x4)
U12_GGA(x1, x2, x3, x4)  =  U12_GGA(x4)

We have to consider all (P,R,Pi)-chains

(9) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 17 less nodes.

(10) Complex Obligation (AND)

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSA_IN_GGA(s(T115), s(T122), X182) → MINUSA_IN_GGA(T115, T122, X182)

The TRS R consists of the following rules:

divD_in_gga(0, T21, 0) → divD_out_gga(0, T21, 0)
divD_in_gga(T39, T40, T42) → U8_gga(T39, T40, T42, minusB_in_gga(T39, T40, X40))
minusB_in_gga(s(T73), s(T80), X97) → U2_gga(T73, T80, X97, minusA_in_gga(T73, T80, X97))
minusA_in_gga(0, T88, 0) → minusA_out_gga(0, T88, 0)
minusA_in_gga(T103, 0, T103) → minusA_out_gga(T103, 0, T103)
minusA_in_gga(s(T115), s(T122), X182) → U1_gga(T115, T122, X182, minusA_in_gga(T115, T122, X182))
U1_gga(T115, T122, X182, minusA_out_gga(T115, T122, X182)) → minusA_out_gga(s(T115), s(T122), X182)
U2_gga(T73, T80, X97, minusA_out_gga(T73, T80, X97)) → minusB_out_gga(s(T73), s(T80), X97)
U8_gga(T39, T40, T42, minusB_out_gga(T39, T40, X40)) → divD_out_gga(T39, T40, T42)
divD_in_gga(T39, T40, T42) → U9_gga(T39, T40, T42, minusB_in_gga(T39, T40, T45))
U9_gga(T39, T40, T42, minusB_out_gga(T39, T40, T45)) → U10_gga(T39, T40, T42, divC_in_gga(T45, T40, X41))
divC_in_gga(0, T142, 0) → divC_out_gga(0, T142, 0)
divC_in_gga(T152, T153, X265) → U3_gga(T152, T153, X265, minusB_in_gga(T152, T153, X263))
U3_gga(T152, T153, X265, minusB_out_gga(T152, T153, X263)) → divC_out_gga(T152, T153, X265)
divC_in_gga(T152, T153, X265) → U4_gga(T152, T153, X265, minusB_in_gga(T152, T153, T156))
U4_gga(T152, T153, X265, minusB_out_gga(T152, T153, T156)) → U5_gga(T152, T153, X265, divC_in_gga(T156, T153, X264))
divC_in_gga(T152, T153, s(T166)) → U6_gga(T152, T153, T166, minusB_in_gga(T152, T153, T156))
U6_gga(T152, T153, T166, minusB_out_gga(T152, T153, T156)) → U7_gga(T152, T153, T166, divC_in_gga(T156, T153, T166))
U7_gga(T152, T153, T166, divC_out_gga(T156, T153, T166)) → divC_out_gga(T152, T153, s(T166))
U5_gga(T152, T153, X265, divC_out_gga(T156, T153, X264)) → divC_out_gga(T152, T153, X265)
U10_gga(T39, T40, T42, divC_out_gga(T45, T40, X41)) → divD_out_gga(T39, T40, T42)
divD_in_gga(T39, T40, s(T172)) → U11_gga(T39, T40, T172, minusB_in_gga(T39, T40, T45))
U11_gga(T39, T40, T172, minusB_out_gga(T39, T40, T45)) → U12_gga(T39, T40, T172, divC_in_gga(T45, T40, T172))
U12_gga(T39, T40, T172, divC_out_gga(T45, T40, T172)) → divD_out_gga(T39, T40, s(T172))

The argument filtering Pi contains the following mapping:
divD_in_gga(x1, x2, x3)  =  divD_in_gga(x1, x2)
0  =  0
divD_out_gga(x1, x2, x3)  =  divD_out_gga
U8_gga(x1, x2, x3, x4)  =  U8_gga(x4)
minusB_in_gga(x1, x2, x3)  =  minusB_in_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
minusB_out_gga(x1, x2, x3)  =  minusB_out_gga(x3)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x2, x4)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
divC_in_gga(x1, x2, x3)  =  divC_in_gga(x1, x2)
divC_out_gga(x1, x2, x3)  =  divC_out_gga
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x2, x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x4)
MINUSA_IN_GGA(x1, x2, x3)  =  MINUSA_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(12) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(13) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSA_IN_GGA(s(T115), s(T122), X182) → MINUSA_IN_GGA(T115, T122, X182)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
MINUSA_IN_GGA(x1, x2, x3)  =  MINUSA_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(14) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUSA_IN_GGA(s(T115), s(T122)) → MINUSA_IN_GGA(T115, T122)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(16) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MINUSA_IN_GGA(s(T115), s(T122)) → MINUSA_IN_GGA(T115, T122)
    The graph contains the following edges 1 > 1, 2 > 2

(17) YES

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVC_IN_GGA(T152, T153, X265) → U4_GGA(T152, T153, X265, minusB_in_gga(T152, T153, T156))
U4_GGA(T152, T153, X265, minusB_out_gga(T152, T153, T156)) → DIVC_IN_GGA(T156, T153, X264)
DIVC_IN_GGA(T152, T153, s(T166)) → U6_GGA(T152, T153, T166, minusB_in_gga(T152, T153, T156))
U6_GGA(T152, T153, T166, minusB_out_gga(T152, T153, T156)) → DIVC_IN_GGA(T156, T153, T166)

The TRS R consists of the following rules:

divD_in_gga(0, T21, 0) → divD_out_gga(0, T21, 0)
divD_in_gga(T39, T40, T42) → U8_gga(T39, T40, T42, minusB_in_gga(T39, T40, X40))
minusB_in_gga(s(T73), s(T80), X97) → U2_gga(T73, T80, X97, minusA_in_gga(T73, T80, X97))
minusA_in_gga(0, T88, 0) → minusA_out_gga(0, T88, 0)
minusA_in_gga(T103, 0, T103) → minusA_out_gga(T103, 0, T103)
minusA_in_gga(s(T115), s(T122), X182) → U1_gga(T115, T122, X182, minusA_in_gga(T115, T122, X182))
U1_gga(T115, T122, X182, minusA_out_gga(T115, T122, X182)) → minusA_out_gga(s(T115), s(T122), X182)
U2_gga(T73, T80, X97, minusA_out_gga(T73, T80, X97)) → minusB_out_gga(s(T73), s(T80), X97)
U8_gga(T39, T40, T42, minusB_out_gga(T39, T40, X40)) → divD_out_gga(T39, T40, T42)
divD_in_gga(T39, T40, T42) → U9_gga(T39, T40, T42, minusB_in_gga(T39, T40, T45))
U9_gga(T39, T40, T42, minusB_out_gga(T39, T40, T45)) → U10_gga(T39, T40, T42, divC_in_gga(T45, T40, X41))
divC_in_gga(0, T142, 0) → divC_out_gga(0, T142, 0)
divC_in_gga(T152, T153, X265) → U3_gga(T152, T153, X265, minusB_in_gga(T152, T153, X263))
U3_gga(T152, T153, X265, minusB_out_gga(T152, T153, X263)) → divC_out_gga(T152, T153, X265)
divC_in_gga(T152, T153, X265) → U4_gga(T152, T153, X265, minusB_in_gga(T152, T153, T156))
U4_gga(T152, T153, X265, minusB_out_gga(T152, T153, T156)) → U5_gga(T152, T153, X265, divC_in_gga(T156, T153, X264))
divC_in_gga(T152, T153, s(T166)) → U6_gga(T152, T153, T166, minusB_in_gga(T152, T153, T156))
U6_gga(T152, T153, T166, minusB_out_gga(T152, T153, T156)) → U7_gga(T152, T153, T166, divC_in_gga(T156, T153, T166))
U7_gga(T152, T153, T166, divC_out_gga(T156, T153, T166)) → divC_out_gga(T152, T153, s(T166))
U5_gga(T152, T153, X265, divC_out_gga(T156, T153, X264)) → divC_out_gga(T152, T153, X265)
U10_gga(T39, T40, T42, divC_out_gga(T45, T40, X41)) → divD_out_gga(T39, T40, T42)
divD_in_gga(T39, T40, s(T172)) → U11_gga(T39, T40, T172, minusB_in_gga(T39, T40, T45))
U11_gga(T39, T40, T172, minusB_out_gga(T39, T40, T45)) → U12_gga(T39, T40, T172, divC_in_gga(T45, T40, T172))
U12_gga(T39, T40, T172, divC_out_gga(T45, T40, T172)) → divD_out_gga(T39, T40, s(T172))

The argument filtering Pi contains the following mapping:
divD_in_gga(x1, x2, x3)  =  divD_in_gga(x1, x2)
0  =  0
divD_out_gga(x1, x2, x3)  =  divD_out_gga
U8_gga(x1, x2, x3, x4)  =  U8_gga(x4)
minusB_in_gga(x1, x2, x3)  =  minusB_in_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
minusB_out_gga(x1, x2, x3)  =  minusB_out_gga(x3)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x2, x4)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
divC_in_gga(x1, x2, x3)  =  divC_in_gga(x1, x2)
divC_out_gga(x1, x2, x3)  =  divC_out_gga
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x2, x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x4)
DIVC_IN_GGA(x1, x2, x3)  =  DIVC_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x2, x4)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x2, x4)

We have to consider all (P,R,Pi)-chains

(19) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(20) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVC_IN_GGA(T152, T153, X265) → U4_GGA(T152, T153, X265, minusB_in_gga(T152, T153, T156))
U4_GGA(T152, T153, X265, minusB_out_gga(T152, T153, T156)) → DIVC_IN_GGA(T156, T153, X264)
DIVC_IN_GGA(T152, T153, s(T166)) → U6_GGA(T152, T153, T166, minusB_in_gga(T152, T153, T156))
U6_GGA(T152, T153, T166, minusB_out_gga(T152, T153, T156)) → DIVC_IN_GGA(T156, T153, T166)

The TRS R consists of the following rules:

minusB_in_gga(s(T73), s(T80), X97) → U2_gga(T73, T80, X97, minusA_in_gga(T73, T80, X97))
U2_gga(T73, T80, X97, minusA_out_gga(T73, T80, X97)) → minusB_out_gga(s(T73), s(T80), X97)
minusA_in_gga(0, T88, 0) → minusA_out_gga(0, T88, 0)
minusA_in_gga(T103, 0, T103) → minusA_out_gga(T103, 0, T103)
minusA_in_gga(s(T115), s(T122), X182) → U1_gga(T115, T122, X182, minusA_in_gga(T115, T122, X182))
U1_gga(T115, T122, X182, minusA_out_gga(T115, T122, X182)) → minusA_out_gga(s(T115), s(T122), X182)

The argument filtering Pi contains the following mapping:
0  =  0
minusB_in_gga(x1, x2, x3)  =  minusB_in_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
minusB_out_gga(x1, x2, x3)  =  minusB_out_gga(x3)
DIVC_IN_GGA(x1, x2, x3)  =  DIVC_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x2, x4)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x2, x4)

We have to consider all (P,R,Pi)-chains

(21) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIVC_IN_GGA(T152, T153) → U4_GGA(T153, minusB_in_gga(T152, T153))
U4_GGA(T153, minusB_out_gga(T156)) → DIVC_IN_GGA(T156, T153)
DIVC_IN_GGA(T152, T153) → U6_GGA(T153, minusB_in_gga(T152, T153))
U6_GGA(T153, minusB_out_gga(T156)) → DIVC_IN_GGA(T156, T153)

The TRS R consists of the following rules:

minusB_in_gga(s(T73), s(T80)) → U2_gga(minusA_in_gga(T73, T80))
U2_gga(minusA_out_gga(X97)) → minusB_out_gga(X97)
minusA_in_gga(0, T88) → minusA_out_gga(0)
minusA_in_gga(T103, 0) → minusA_out_gga(T103)
minusA_in_gga(s(T115), s(T122)) → U1_gga(minusA_in_gga(T115, T122))
U1_gga(minusA_out_gga(X182)) → minusA_out_gga(X182)

The set Q consists of the following terms:

minusB_in_gga(x0, x1)
U2_gga(x0)
minusA_in_gga(x0, x1)
U1_gga(x0)

We have to consider all (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


U4_GGA(T153, minusB_out_gga(T156)) → DIVC_IN_GGA(T156, T153)
U6_GGA(T153, minusB_out_gga(T156)) → DIVC_IN_GGA(T156, T153)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(DIVC_IN_GGA(x1, x2)) = x1   
POL(U1_gga(x1)) = x1   
POL(U2_gga(x1)) = x1   
POL(U4_GGA(x1, x2)) = x2   
POL(U6_GGA(x1, x2)) = x2   
POL(minusA_in_gga(x1, x2)) = 1 + x1   
POL(minusA_out_gga(x1)) = 1 + x1   
POL(minusB_in_gga(x1, x2)) = x1   
POL(minusB_out_gga(x1)) = 1 + x1   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

minusB_in_gga(s(T73), s(T80)) → U2_gga(minusA_in_gga(T73, T80))
minusA_in_gga(0, T88) → minusA_out_gga(0)
minusA_in_gga(T103, 0) → minusA_out_gga(T103)
minusA_in_gga(s(T115), s(T122)) → U1_gga(minusA_in_gga(T115, T122))
U2_gga(minusA_out_gga(X97)) → minusB_out_gga(X97)
U1_gga(minusA_out_gga(X182)) → minusA_out_gga(X182)

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIVC_IN_GGA(T152, T153) → U4_GGA(T153, minusB_in_gga(T152, T153))
DIVC_IN_GGA(T152, T153) → U6_GGA(T153, minusB_in_gga(T152, T153))

The TRS R consists of the following rules:

minusB_in_gga(s(T73), s(T80)) → U2_gga(minusA_in_gga(T73, T80))
U2_gga(minusA_out_gga(X97)) → minusB_out_gga(X97)
minusA_in_gga(0, T88) → minusA_out_gga(0)
minusA_in_gga(T103, 0) → minusA_out_gga(T103)
minusA_in_gga(s(T115), s(T122)) → U1_gga(minusA_in_gga(T115, T122))
U1_gga(minusA_out_gga(X182)) → minusA_out_gga(X182)

The set Q consists of the following terms:

minusB_in_gga(x0, x1)
U2_gga(x0)
minusA_in_gga(x0, x1)
U1_gga(x0)

We have to consider all (P,Q,R)-chains.

(25) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(26) TRUE